Differential-difference equation for call option price in jump process model

Math622

February 8, 2014

Reading material: Shreve Section 11.7

1 Heuristic

Suppose S(t) satisfies

$$dS(t) = \alpha S(t)dt + \sigma S(t)dM(t),$$

where $M(t) = N(t) - \lambda t$ is a compensated Poisson process under \mathbb{P} .

From the change of measure section, we learned that under the risk neutral measure \mathbb{Q} , S(t) has the dynamic:

$$dSt = (r - \lambda \sigma)S(t)dt + \sigma S(t)dN(t),$$

where $\tilde{\lambda} = \lambda - \frac{\alpha - r}{\sigma}$ and N is a Poisson process with rate $\tilde{\lambda}$ under \mathbb{Q} .

The call option price V(t), where $V(T) = (S(T) - K)^+$ can be written as

$$V(t) = \mathbb{E}^{\mathbb{Q}} \left[e^{-r(T-t)} (S(T) - K)^+ | \mathcal{F}(t) \right]$$

= $c(t, S(t)),$

where

$$c(t,x) := e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}} \left[\left(x e^{(r-\tilde{\lambda}\sigma)(T-t) + \log(1+\sigma)(N(T)-N(t))} - K \right)^+ \right]$$

As in the Black-Scholes model, we want to derive an equation that c(t, x) satisfies. The key principle here (albeit being heurisitc) is to apply Ito's formula to $e^{-rt}c(t, S(t))$ to achieve

$$de^{-rt}c(t, S(t)) = f(t, c(t, S(t)))dt +$$
something $dM(t)$,

where M(t) is a Q-martingale. Then the equation that we look for is

$$f(t, c(t, S(t)) = 0.$$

The heuristic reason is $e^{-rt}c(t, S(t))$ is a Q-martingale by being a conditional expectation. Therefore, its drift has to be 0.

2 Model with Poisson random source

Suppose S(t) satisfies

$$dS(t) = \alpha S(t)dt + \sigma S(t)dM(t),$$

where $M(t) = N(t) - \lambda t$ is a compensated Poisson process under \mathbb{P} .

Apply Ito's formula to $e^{-rt}c(t, S(t))$, recognizing there is no Brownian motion component, we have

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t -re^{-ru}c(u,S(u))du + e^{-ru}\frac{\partial}{\partial t}c(u,S(u))du + e^{-ru}\frac{\partial}{\partial x}c(u,S(u))dS^c(u) \\ &+ \sum_{0 < u \le t} e^{-ru}[c(u,S(u)) - c(u-,S(u-))] \\ &= \int_0^t e^{-ru}\Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{\lambda}\sigma)S(u)\Big]du \\ &+ \sum_{0 < u \le t} e^{-ru}[c(u,S(u)) - c(u,S(u-))]. \end{split}$$

We need to rewrite $\sum_{0 < u \le t} e^{-ru}[c(u, S(u)) - c(u, S(u-))]$ as it is not in differential form. Two key observations will help us here:

(i) $S(u) = (1 + \sigma \Delta N(u))S(u) = (1 + \sigma)S(u).$

(ii) c(u, S(u)) jumps at the same points as S(u), which in turn jumps at the same points as N(u). Again keep in mind that $\Delta N(u) = 1$.

Thus

$$\sum_{0 < u \le t} e^{-ru} [c(u, S(u)) - c(u, S(u-))] = \sum_{0 < u \le t} e^{-ru} [c(u, S(u-)(1+\sigma)) - c(u, S(u-))]$$

=
$$\int_0^t e^{-ru} [c(u, S(u-)(1+\sigma)) - c(u, S(u-))] dN(u),$$

where the first equality uses observations (i) and second equality uses observation (ii).

Putting all these together gives

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t e^{-ru} \Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{\lambda}\sigma)S(u) \Big] du \\ &+ \int_0^t e^{-ru} [c(u,S(u-)(1+\sigma)) - c(u,S(u-))] dN(u). \end{split}$$

The last thing to do is to change dN(u) to dM(u) for some martingale M. This is easy: we only need to subtract and add $\tilde{\lambda}du$ to dN(u). So finally

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t e^{-ru} \Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{\lambda}\sigma)S(u) \\ &+ [c(u,S(u-)(1+\sigma)) - c(u,S(u-))]\tilde{\lambda} \Big] du \\ &+ \int_0^t e^{-ru} [c(u,S(u-)(1+\sigma)) - c(u,S(u-))] dM(u) \\ &= \int_0^t e^{-ru} \Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{\lambda}\sigma)S(u) \\ &+ [c(u,S(u)(1+\sigma)) - c(u,S(u))]\tilde{\lambda} \Big] du \\ &+ \int_0^t e^{-ru} [c(u,S(u-)(1+\sigma)) - c(u-,S(u-))] dM(u), \end{split}$$

where in the second equality we uses the fact that we are integrating with respect to du so using S(u-) or S(u) gives the same result.

Now apply the principle in Section (1) we get

Theorem 2.1. The call option price c(t, x) in the model of this section satisfies the differential difference equation

$$\begin{aligned} -rc(t,x) &+ \frac{\partial}{\partial t}c(t,x) + (r - \tilde{\lambda}\sigma)x\frac{\partial}{\partial x}c(t,x) \\ &+ \tilde{\lambda}[c(t,x(1+\sigma)) - c(t,x)] = 0, 0 \le t < T, x > 0 \\ c(T,x) &= (x - K)^+, x > 0. \end{aligned}$$

3 Model with compound Poisson random source

Suppose S(t) has the dynamic:

$$dSt = (r - \tilde{m}\sigma)S(t)dt + \sigma S(t)dQ(t),$$

where Q(t) is a compound Poisson process with rate $\mathbb{E}^{\mathbb{Q}}(Q(1)) = 1$. We also assume that $Q(t) = \sum_{i=1}^{N(t)} Y_i$ where each Y_i takes discrete distribution with values $y_1, y_2, ..., y_m$.

Following the same procedure as the above section, apply Ito's formula to $e^{-rt}c(t, S(t))$ gives

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t -re^{-ru}c(u,S(u))du + e^{-ru}\frac{\partial}{\partial t}c(u,S(u))du + e^{-ru}\frac{\partial}{\partial x}c(u,S(u))dS^c(u) \\ &+ \sum_{0 < u \leq t} e^{-ru}[c(u,S(u)) - c(u-,S(u-))] \\ &= \int_0^t e^{-ru}\Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{m}\sigma)S(u)\Big]du \\ &+ \sum_{0 < u \leq t} e^{-ru}[c(u,S(u)) - c(u,S(u-))]. \end{split}$$

Now by the Poisson process decomposition, we can write

$$Q(t) = \sum_{i=1}^{m} y_i N_i(t),$$

where each $N_i(t)$ is a Poisson process with rate $\tilde{\lambda}_i$, i = 1, ..., m under \mathbb{Q} . An important fact here is that since N_i 's are independent, they do not jump at the same time. So at all jump point of Q:

$$1 + \sigma \Delta Q(t) = 1 + \sigma y_i \Delta N_i(t)$$
, for some *i*.

Thus we have,

$$\begin{split} &\sum_{0 < u \le t} e^{-ru} [c(u, S(u)) - c(u, S(u-))] = \sum_{0 < u \le N(t)} e^{-ru} [c(u, S(u-)(1 + \sigma \Delta Q(u))) - c(u, S(u-))] \\ &= \sum_{i=1}^{m} \Big[\sum_{0 < u \le t} e^{-ru} [c(u, S(u-)(1 + \sigma y_i)) - c(u, S(u-))] \Delta N_i(u) \Big] \\ &= \sum_{i=1}^{m} \Big[\int_0^t e^{-ru} [c(u, S(u-)(1 + \sigma y_i)) - c(u, S(u-))] dN_i(u) \Big]. \end{split}$$

 So

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t e^{-ru} \Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{m}\sigma)S(u) \\ &+ \sum_{i=1}^m [c(u,S(u)(1+\sigma y_i)) - c(u,S(u))]\tilde{\lambda}_i \Big] du \\ &+ \int_0^t e^{-ru} [c(u,S(u)) - c(u,S(u-))] dM(u), \end{split}$$

where

$$M(t) = \sum_{i=1}^{m} N_i(t) - \tilde{\lambda}_i t$$

is a \mathbb{Q} -martingale.

Setting the dt part to be 0 gives the following:

Theorem 3.1. The call option price c(t, x) in the model of this section satisfies the differential difference equation

$$-rc(t,x) + \frac{\partial}{\partial t}c(t,x) + (r - \tilde{m}\sigma)x\frac{\partial}{\partial x}c(t,x) + \sum_{i=1}^{m} [c(t,x(1+\sigma y_i)) - c(t,x)]\tilde{\lambda}_i = 0, 0 \le t < T, x > 0 c(T,x) = (x - K)^+, x > 0.$$

4 Model with compound Poisson and Brownian motion random source

Suppose S(t) has the dynamic:

$$dSt = (r - \tilde{m})S(t)dt + S(t)dQ(t) + \sigma S(t)d\tilde{W}(t),$$

where Q(t) is a compound Poisson process with rate $\mathbb{E}^{\mathbb{Q}}(Q(1)) = 1$ and $\tilde{W}(t)$ is a \mathbb{Q} Brownian motion. We also assume that $Q(t) = \sum_{i=1}^{N(t)} Y_i$ where each Y_i takes discrete distribution with values $y_1, y_2, ..., y_m$.

Following the same procedure as the above section, apply Ito's formula to $e^{-rt}c(t, S(t))$ gives

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t -re^{-ru}c(u,S(u))du + e^{-ru}\frac{\partial}{\partial t}c(u,S(u))du + e^{-ru}\frac{\partial}{\partial x}c(u,S(u))dS^c(u) \\ &+ \frac{1}{2}e^{-ru}\frac{\partial^2}{\partial x^2}c(u,S(u))\sigma^2S^2(u)du + \sum_{0 < u \le t} e^{-ru}[c(u,S(u)) - c(u-,S(u-))] \\ &= \int_0^t e^{-ru}\Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{m})S(u) \\ &+ \frac{1}{2}\frac{\partial^2}{\partial x^2}c(u,S(u))\sigma^2S^2(u)\Big]du \\ &+ \int_0^t e^{-ru}\frac{\partial}{\partial x}c(t,S(u))S(u)d\tilde{W}(u) + \sum_{0 < u \le t} e^{-ru}[c(u,S(u)) - c(u,S(u-))]. \end{split}$$

Follow the same exact analysis for $\sum_{0 < u \le t} e^{-ru}[c(u, S(u)) - c(u, S(u-))]$ as in section (3) we have

$$\begin{split} e^{-rt}c(t,S(t)) &= \int_0^t e^{-ru} \Big[-rc(u,S(u)) + \frac{\partial}{\partial t}c(u,S(u)) + \frac{\partial}{\partial x}c(t,S(u))(r-\tilde{m})S(u) \\ &+ \frac{1}{2}\frac{\partial^2}{\partial x^2}c(u,S(u))\sigma^2S^2(u) + \sum_{i=1}^m [c(u,S(u)(1+y_i)) - c(u,S(u))]\tilde{\lambda}_i \Big] du \\ &+ \int_0^t e^{-ru}\frac{\partial}{\partial x}c(t,S(u))S(u)d\tilde{W}(u) + \int_0^t e^{-ru} [c(u,S(u)) - c(u,S(u-))] dM(u), \end{split}$$

where

$$M(t) = \sum_{i=1}^{m} N_i(t) - \tilde{\lambda}_i t$$

is a Q-martingale.

Setting the dt part to be 0 gives the following:

Theorem 4.1. The call option price c(t, x) in the model of this section satisfies the differential difference equation

$$-rc(t,x) + \frac{\partial}{\partial t}c(t,x) + (r-\tilde{m})x\frac{\partial}{\partial x}c(t,x) + \frac{1}{2}\frac{\partial^2}{\partial x^2}c(t,x)\sigma^2 x^2 + \sum_{i=1}^m [c(t,x(1+y_i)) - c(t,x)]\tilde{\lambda}_i = 0, 0 \le t < t, x > 0; c(T,x) = (x-K)^+, x > 0.$$