Differential-difference equation for call option price in jump process model

Math 622
February 8, 2014

Reading material: Shreve Section 11.7

1 Heuristic

Suppose $S(t)$ satisfies

$$
d S(t)=\alpha S(t) d t+\sigma S(t) d M(t)
$$

where $M(t)=N(t)-\lambda t$ is a compensated Poisson process under \mathbb{P}.
From the change of measure section, we learned that under the risk neutral measure $\mathbb{Q}, S(t)$ has the dynamic:

$$
d S t=(r-\tilde{\lambda} \sigma) S(t) d t+\sigma S(t-) d N(t)
$$

where $\tilde{\lambda}=\lambda-\frac{\alpha-r}{\sigma}$ and N is a Poisson process with rate $\tilde{\lambda}$ under \mathbb{Q}.
The call option price $V(t)$, where $V(T)=(S(T)-K)^{+}$can be written as

$$
\begin{aligned}
V(t) & =\mathbb{E}^{\mathbb{Q}}\left[e^{-r(T-t)}(S(T)-K)^{+} \mid \mathcal{F}(t)\right] \\
& =c(t, S(t))
\end{aligned}
$$

where

$$
c(t, x):=e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}\left[\left(x e^{(r-\tilde{\lambda} \sigma)(T-t)+\log (1+\sigma)(N(T)-N(t))}-K\right)^{+}\right] .
$$

As in the Black-Scholes model, we want to derive an equation that $c(t, x)$ satisfies. The key principle here (albeit being heurisitc) is to apply Ito's formula to $e^{-r t} c(t, S(t))$ to achieve

$$
d e^{-r t} c(t, S(t))=f(t, c(t, S(t))) d t+\text { something } d M(t)
$$

where $M(t)$ is a \mathbb{Q}-martingale. Then the equation that we look for is

$$
f(t, c(t, S(t))=0
$$

The heuristic reason is $e^{-r t} c(t, S(t))$ is a \mathbb{Q}-martingale by being a conditional expectation. Therefore, its drift has to be 0 .

2 Model with Poisson random source

Suppose $S(t)$ satisfies

$$
d S(t)=\alpha S(t) d t+\sigma S(t) d M(t)
$$

where $M(t)=N(t)-\lambda t$ is a compensated Poisson process under \mathbb{P}.
Aplly Ito's formula to $e^{-r t} c(t, S(t))$, recognizing there is no Brownian motion component, we have

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t}-r e^{-r u} c(u, S(u)) d u+e^{-r u} \frac{\partial}{\partial t} c(u, S(u)) d u+e^{-r u} \frac{\partial}{\partial x} c(u, S(u)) d S^{c}(u) \\
& +\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u-, S(u-))] \\
= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{\lambda} \sigma) S(u)\right] d u \\
& +\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))] .
\end{aligned}
$$

We need to rewrite $\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))]$ as it is not in differential form. Two key observations will help us here:
(i) $S(u)=(1+\sigma \Delta N(u)) S(u-)=(1+\sigma) S(u-)$.
(ii) $c(u, S(u))$ jumps at the same points as $S(u)$, which in turn jumps at the same points as $N(u)$. Again keep in mind that $\Delta N(u)=1$.

Thus

$$
\begin{aligned}
& \sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))]=\sum_{0<u \leq t} e^{-r u}[c(u, S(u-)(1+\sigma))-c(u, S(u-))] \\
= & \int_{0}^{t} e^{-r u}[c(u, S(u-)(1+\sigma))-c(u, S(u-))] d N(u),
\end{aligned}
$$

where the first equality uses observations (i) and second equality uses observation (ii).

Putting all these together gives

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{\lambda} \sigma) S(u)\right] d u \\
& +\int_{0}^{t} e^{-r u}[c(u, S(u-)(1+\sigma))-c(u, S(u-))] d N(u)
\end{aligned}
$$

The last thing to do is to change $d N(u)$ to $d M(u)$ for some martingale M. This is easy: we only need to subtract and add $\tilde{\lambda} d u$ to $d N(u)$. So finally

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{\lambda} \sigma) S(u)\right. \\
& +[c(u, S(u-)(1+\sigma))-c(u, S(u-))] \tilde{\lambda}] d u \\
& +\int_{0}^{t} e^{-r u}[c(u, S(u-)(1+\sigma))-c(u, S(u-))] d M(u) \\
= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{\lambda} \sigma) S(u)\right. \\
& +[c(u, S(u)(1+\sigma))-c(u, S(u))] \tilde{\lambda}] d u \\
& +\int_{0}^{t} e^{-r u}[c(u, S(u-)(1+\sigma))-c(u-, S(u-))] d M(u),
\end{aligned}
$$

where in the second equality we uses the fact that we are integrating with respect to $d u$ so using $S(u-)$ or $S(u)$ gives the same result.

Now apply the principle in Section (1) we get
Theorem 2.1. The call option price $c(t, x)$ in the model of this section satisfies the differential difference equation

$$
\begin{aligned}
-r c(t, x) & +\frac{\partial}{\partial t} c(t, x)+(r-\tilde{\lambda} \sigma) x \frac{\partial}{\partial x} c(t, x) \\
& +\tilde{\lambda}[c(t, x(1+\sigma))-c(t, x)]=0,0 \leq t<T, x>0 \\
c(T, x) & =(x-K)^{+}, x>0
\end{aligned}
$$

3 Model with compound Poisson random source

Suppose $S(t)$ has the dynamic:

$$
d S t=(r-\tilde{m} \sigma) S(t) d t+\sigma S(t-) d Q(t)
$$

where $Q(t)$ is a compound Poisson process with rate $\mathbb{E}^{\mathbb{Q}}(Q(1))=1$. We also assume that $Q(t)=\sum_{i=1}^{N(t)} Y_{i}$ where each Y_{i} takes discrete distribution with values $y_{1}, y_{2}, \ldots, y_{m}$.

Following the same procedure as the above section, apply Ito's formula to $e^{-r t} c(t, S(t))$ gives

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t}-r e^{-r u} c(u, S(u)) d u+e^{-r u} \frac{\partial}{\partial t} c(u, S(u)) d u+e^{-r u} \frac{\partial}{\partial x} c(u, S(u)) d S^{c}(u) \\
& +\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u-, S(u-))] \\
= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{m} \sigma) S(u)\right] d u \\
& +\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))] .
\end{aligned}
$$

Now by the Poisson process decomposition, we can write

$$
Q(t)=\sum_{i=1}^{m} y_{i} N_{i}(t)
$$

where each $N_{i}(t)$ is a Poisson process with rate $\tilde{\lambda}_{i}, i=1, \ldots, m$ under \mathbb{Q}. An important fact here is that since N_{i} 's are independent, they do not jump at the same time. So at all jump point of Q :

$$
1+\sigma \Delta Q(t)=1+\sigma y_{i} \Delta N_{i}(t), \text { for some } i
$$

Thus we have,

$$
\begin{aligned}
& \sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))]=\sum_{0<u \leq N(t)} e^{-r u}[c(u, S(u-)(1+\sigma \Delta Q(u)))-c(u, S(u-))] \\
= & \sum_{i=1}^{m}\left[\sum_{0<u \leq t} e^{-r u}\left[c\left(u, S(u-)\left(1+\sigma y_{i}\right)\right)-c(u, S(u-))\right] \Delta N_{i}(u)\right] \\
= & \sum_{i=1}^{m}\left[\int_{0}^{t} e^{-r u}\left[c\left(u, S(u-)\left(1+\sigma y_{i}\right)\right)-c(u, S(u-))\right] d N_{i}(u)\right] .
\end{aligned}
$$

So

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{m} \sigma) S(u)\right. \\
& \left.+\sum_{i=1}^{m}\left[c\left(u, S(u)\left(1+\sigma y_{i}\right)\right)-c(u, S(u))\right] \tilde{\lambda}_{i}\right] d u \\
& +\int_{0}^{t} e^{-r u}[c(u, S(u))-c(u, S(u-))] d M(u),
\end{aligned}
$$

where

$$
M(t)=\sum_{i=1}^{m} N_{i}(t)-\tilde{\lambda}_{i} t
$$

is a \mathbb{Q}-martingale.
Setting the $d t$ part to be 0 gives the following:
Theorem 3.1. The call option price $c(t, x)$ in the model of this section satisfies the differential difference equation

$$
\begin{aligned}
-r c(t, x) & +\frac{\partial}{\partial t} c(t, x)+(r-\tilde{m} \sigma) x \frac{\partial}{\partial x} c(t, x) \\
& +\sum_{i=1}^{m}\left[c\left(t, x\left(1+\sigma y_{i}\right)\right)-c(t, x)\right] \tilde{\lambda}_{i}=0,0 \leq t<T, x>0 \\
c(T, x) & =(x-K)^{+}, x>0 .
\end{aligned}
$$

4 Model with compound Poisson and Brownian motion random source

Suppose $S(t)$ has the dynamic:

$$
d S t=(r-\tilde{m}) S(t) d t+S(t-) d Q(t)+\sigma S(t) d \tilde{W}(t)
$$

where $Q(t)$ is a compound Poisson process with rate $\mathbb{E}^{\mathbb{Q}}(Q(1))=1$ and $\tilde{W}(t)$ is a \mathbb{Q} Brownian motion. We also assume that $Q(t)=\sum_{i=1}^{N(t)} Y_{i}$ where each Y_{i} takes discrete distribution with values $y_{1}, y_{2}, \ldots, y_{m}$.

Following the same procedure as the above section, apply Ito's formula to $e^{-r t} c(t, S(t))$ gives

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t}-r e^{-r u} c(u, S(u)) d u+e^{-r u} \frac{\partial}{\partial t} c(u, S(u)) d u+e^{-r u} \frac{\partial}{\partial x} c(u, S(u)) d S^{c}(u) \\
& +\frac{1}{2} e^{-r u} \frac{\partial^{2}}{\partial x^{2}} c(u, S(u)) \sigma^{2} S^{2}(u) d u+\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u-, S(u-))] \\
= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{m}) S(u)\right. \\
& \left.+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} c(u, S(u)) \sigma^{2} S^{2}(u)\right] d u \\
& +\int_{0}^{t} e^{-r u} \frac{\partial}{\partial x} c(t, S(u)) S(u) d \tilde{W}(u)+\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))] .
\end{aligned}
$$

Follow the same exact analysis for $\sum_{0<u \leq t} e^{-r u}[c(u, S(u))-c(u, S(u-))]$ as in section (3) we have

$$
\begin{aligned}
e^{-r t} c(t, S(t))= & \int_{0}^{t} e^{-r u}\left[-r c(u, S(u))+\frac{\partial}{\partial t} c(u, S(u))+\frac{\partial}{\partial x} c(t, S(u))(r-\tilde{m}) S(u)\right. \\
& \left.+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} c(u, S(u)) \sigma^{2} S^{2}(u)+\sum_{i=1}^{m}\left[c\left(u, S(u)\left(1+y_{i}\right)\right)-c(u, S(u))\right] \tilde{\lambda}_{i}\right] d u \\
& +\int_{0}^{t} e^{-r u} \frac{\partial}{\partial x} c(t, S(u)) S(u) d \tilde{W}(u)+\int_{0}^{t} e^{-r u}[c(u, S(u))-c(u, S(u-))] d M(u)
\end{aligned}
$$

where

$$
M(t)=\sum_{i=1}^{m} N_{i}(t)-\tilde{\lambda}_{i} t
$$

is a \mathbb{Q}-martingale.
Setting the $d t$ part to be 0 gives the following:
Theorem 4.1. The call option price $c(t, x)$ in the model of this section satisfies the differential difference equation

$$
\begin{aligned}
-r c(t, x) & +\frac{\partial}{\partial t} c(t, x)+(r-\tilde{m}) x \frac{\partial}{\partial x} c(t, x)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} c(t, x) \sigma^{2} x^{2} \\
& +\sum_{i=1}^{m}\left[c\left(t, x\left(1+y_{i}\right)\right)-c(t, x)\right] \tilde{\lambda}_{i}=0,0 \leq t<t, x>0 \\
c(T, x) & =(x-K)^{+}, x>0
\end{aligned}
$$

