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1 Heuristic

Suppose S(t) satisfies

dS(t) = αS(t)dt+ σS(t)dM(t),

where M(t) = N(t)− λt is a compensated Poisson process under P.

From the change of measure section, we learned that under the risk neutral mea-

sure Q, S(t) has the dynamic:

dSt = (r − λ̃σ)S(t)dt+ σS(t−)dN(t),

where λ̃ = λ− α−r
σ

and N is a Poisson process with rate λ̃ under Q.

The call option price V (t), where V (T ) = (S(T )−K)+ can be written as

V (t) = EQ
[
e−r(T−t)(S(T )−K)+|F(t)

]
= c(t, S(t)),

where

c(t, x) := e−r(T−t)EQ
[
(xe(r−λ̃σ)(T−t)+log(1+σ)(N(T )−N(t)) −K)+

]
.

As in the Black-Scholes model, we want to derive an equation that c(t, x) satisfies.

The key principle here (albeit being heurisitc) is to apply Ito’s formula to e−rtc(t, S(t))

to achieve

de−rtc(t, S(t)) = f(t, c(t, S(t)))dt+ something dM(t),
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where M(t) is a Q-martingale. Then the equation that we look for is

f(t, c(t, S(t)) = 0.

The heuristic reason is e−rtc(t, S(t)) is a Q-martingale by being a conditional

expectation. Therefore, its drift has to be 0.

2 Model with Poisson random source

Suppose S(t) satisfies

dS(t) = αS(t)dt+ σS(t)dM(t),

where M(t) = N(t)− λt is a compensated Poisson process under P.

Aplly Ito’s formula to e−rtc(t, S(t)), recognizing there is no Brownian motion

component, we have

e−rtc(t, S(t)) =

∫ t

0

−re−ruc(u, S(u))du+ e−ru
∂

∂t
c(u, S(u))du+ e−ru

∂

∂x
c(u, S(u))dSc(u)

+
∑

0<u≤t

e−ru[c(u, S(u))− c(u−, S(u−))]

=

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − λ̃σ)S(u)

]
du

+
∑

0<u≤t

e−ru[c(u, S(u))− c(u, S(u−))].

We need to rewrite
∑

0<u≤t e
−ru[c(u, S(u))−c(u, S(u−))] as it is not in differential

form. Two key observations will help us here:

(i) S(u) = (1 + σ∆N(u))S(u−) = (1 + σ)S(u−).

(ii) c(u, S(u)) jumps at the same points as S(u), which in turn jumps at the same

points as N(u). Again keep in mind that ∆N(u) = 1.

Thus∑
0<u≤t

e−ru[c(u, S(u))− c(u, S(u−))] =
∑

0<u≤t

e−ru[c(u, S(u−)(1 + σ))− c(u, S(u−))]

=

∫ t

0

e−ru[c(u, S(u−)(1 + σ))− c(u, S(u−))]dN(u),

where the first equality uses observations (i) and second equality uses observation (ii).
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Putting all these together gives

e−rtc(t, S(t)) =

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − λ̃σ)S(u)

]
du

+

∫ t

0

e−ru[c(u, S(u−)(1 + σ))− c(u, S(u−))]dN(u).

The last thing to do is to change dN(u) to dM(u) for some martingale M . This

is easy: we only need to subtract and add λ̃du to dN(u). So finally

e−rtc(t, S(t)) =

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − λ̃σ)S(u)

+[c(u, S(u−)(1 + σ))− c(u, S(u−))]λ̃
]
du

+

∫ t

0

e−ru[c(u, S(u−)(1 + σ))− c(u, S(u−))]dM(u)

=

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − λ̃σ)S(u)

+[c(u, S(u)(1 + σ))− c(u, S(u))]λ̃
]
du

+

∫ t

0

e−ru[c(u, S(u−)(1 + σ))− c(u−, S(u−))]dM(u),

where in the second equality we uses the fact that we are integrating with respect to

du so using S(u−) or S(u) gives the same result.

Now apply the principle in Section (1) we get

Theorem 2.1. The call option price c(t, x) in the model of this section satisfies the

differential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − λ̃σ)x

∂

∂x
c(t, x)

+ λ̃[c(t, x(1 + σ))− c(t, x)] = 0, 0 ≤ t < T, x > 0

c(T, x) = (x−K)+, x > 0.

3 Model with compound Poisson random source

Suppose S(t) has the dynamic:

dSt = (r − m̃σ)S(t)dt+ σS(t−)dQ(t),
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where Q(t) is a compound Poisson process with rate EQ(Q(1)) = 1. We also as-

sume that Q(t) =
∑N(t)

i=1 Yi where each Yi takes discrete distribution with values

y1, y2, ..., ym.

Following the same procedure as the above section, apply Ito’s formula to e−rtc(t, S(t))

gives

e−rtc(t, S(t)) =

∫ t

0

−re−ruc(u, S(u))du+ e−ru
∂

∂t
c(u, S(u))du+ e−ru

∂

∂x
c(u, S(u))dSc(u)

+
∑

0<u≤t

e−ru[c(u, S(u))− c(u−, S(u−))]

=

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − m̃σ)S(u)

]
du

+
∑

0<u≤t

e−ru[c(u, S(u))− c(u, S(u−))].

Now by the Poisson process decomposition, we can write

Q(t) =
m∑
i=1

yiNi(t),

where each Ni(t) is a Poisson process with rate λ̃i, i = 1, ...,m under Q. An important

fact here is that since Ni’s are independent, they do not jump at the same time. So

at all jump point of Q:

1 + σ∆Q(t) = 1 + σyi∆Ni(t), for some i.

Thus we have,∑
0<u≤t

e−ru[c(u, S(u))− c(u, S(u−))] =
∑

0<u≤N(t)

e−ru[c(u, S(u−)(1 + σ∆Q(u)))− c(u, S(u−))]

=
m∑
i=1

[ ∑
0<u≤t

e−ru[c(u, S(u−)(1 + σyi))− c(u, S(u−))]∆Ni(u)
]

=
m∑
i=1

[ ∫ t

0

e−ru[c(u, S(u−)(1 + σyi))− c(u, S(u−))]dNi(u)
]
.

So

e−rtc(t, S(t)) =

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − m̃σ)S(u)

+
m∑
i=1

[c(u, S(u)(1 + σyi))− c(u, S(u))]λ̃i

]
du

+

∫ t

0

e−ru[c(u, S(u))− c(u, S(u−))]dM(u),
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where

M(t) =
m∑
i=1

Ni(t)− λ̃it

is a Q-martingale.

Setting the dt part to be 0 gives the following:

Theorem 3.1. The call option price c(t, x) in the model of this section satisfies the

differential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃σ)x

∂

∂x
c(t, x)

+
m∑
i=1

[c(t, x(1 + σyi))− c(t, x)]λ̃i = 0, 0 ≤ t < T, x > 0

c(T, x) = (x−K)+, x > 0.

4 Model with compound Poisson and Brownian

motion random source

Suppose S(t) has the dynamic:

dSt = (r − m̃)S(t)dt+ S(t−)dQ(t) + σS(t)dW̃ (t),

where Q(t) is a compound Poisson process with rate EQ(Q(1)) = 1 and W̃ (t) is a Q
Brownian motion. We also assume that Q(t) =

∑N(t)
i=1 Yi where each Yi takes discrete

distribution with values y1, y2, ..., ym.

Following the same procedure as the above section, apply Ito’s formula to e−rtc(t, S(t))

gives

e−rtc(t, S(t)) =

∫ t

0

−re−ruc(u, S(u))du+ e−ru
∂

∂t
c(u, S(u))du+ e−ru

∂

∂x
c(u, S(u))dSc(u)

+
1

2
e−ru

∂2

∂x2
c(u, S(u))σ2S2(u)du+

∑
0<u≤t

e−ru[c(u, S(u))− c(u−, S(u−))]

=

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − m̃)S(u)

+
1

2

∂2

∂x2
c(u, S(u))σ2S2(u)

]
du

+

∫ t

0

e−ru
∂

∂x
c(t, S(u))S(u)dW̃ (u) +

∑
0<u≤t

e−ru[c(u, S(u))− c(u, S(u−))].
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Follow the same exact analysis for
∑

0<u≤t e
−ru[c(u, S(u)) − c(u, S(u−))] as in

section (3) we have

e−rtc(t, S(t)) =

∫ t

0

e−ru
[
− rc(u, S(u)) +

∂

∂t
c(u, S(u)) +

∂

∂x
c(t, S(u))(r − m̃)S(u)

+
1

2

∂2

∂x2
c(u, S(u))σ2S2(u) +

m∑
i=1

[c(u, S(u)(1 + yi))− c(u, S(u))]λ̃i

]
du

+

∫ t

0

e−ru
∂

∂x
c(t, S(u))S(u)dW̃ (u) +

∫ t

0

e−ru[c(u, S(u))− c(u, S(u−))]dM(u),

where

M(t) =
m∑
i=1

Ni(t)− λ̃it

is a Q-martingale.

Setting the dt part to be 0 gives the following:

Theorem 4.1. The call option price c(t, x) in the model of this section satisfies the

differential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+
m∑
i=1

[c(t, x(1 + yi))− c(t, x)]λ̃i = 0, 0 ≤ t < t, x > 0;

c(T, x) = (x−K)+, x > 0.

6


